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My research interests lie at the intersection of geometric topology, homotopy theory, and functional analysis.
Specifically, I aim to study problems related to characteristic classes and other invariants of families of manifolds,
or manifold bundles, using a combination of homotopy theoretic and functional analytic methods, in particular
utilizing index theoretic interpretations of these invariants.

By a manifold bundle we mean a family of manifolds parametrized by a ”nice” topological space. More
precisely, by an M -bundle we mean a fiber bundle E → B with fiber a smooth manifold M and structure
group the group of diffeomorphisms Diff(M) of M . General knowledge of the ring H∗(BDiff(M)), for H∗

a generalized cohomology theory (see [1]), better known as characteristic classes of M -bundles, is particularly
limited. The solutions to Mumford’s conjecture by Madsen and Weiss [24] and by Galatius, Madsen, Tillman,
and Weiss [20] highlighted a universal perspective from which to consider a large family of characteristic classes of
manifold bundles, known as tautological classes. This universal perspective, and applications of the techniques it
has inspired, is the theme underlying most of my research. Many of the constructions involved in this perspective
admit interpretations in terms of the index theory of elliptic operators. Characteristic of these interpretations
is a unique interplay between modern homotopy theoretic ideas and well worn classical ideas from bordism and
index theory. Broadly speaking, the goal of my research is to further explore and exploit this interplay.

This statement is divided in to 3 sections. The first two essentially summarize the authors thesis work on
characteristic classes of M -bundles. In section 1 we give some background on manifolds bundles and tautological
classes necessary to motivate and state our main results. The results in section 1 were obtained by considering
the index of a certain family of elliptic operators, the odd signature operator Do

V with coeffiecients in a flat
bundle. In section 2 we give a brief outline of how characteristic classes of M -bundles can be realized as indices
of elliptic operators and state our vanishing theorem for Do

V . The results of section 1 and 2 generalize the main
results of [14] which provided the main motivation for our thesis work. Section 3 consists of an outline of some
possible directions for future research.

1. Manifold Bundles and Characteristic classes

Let f : E → B be smooth M -bundle, that is a smooth fiber bundle with fiber M a smooth closed oriented
Riemannian manifold. Recall that isomorphism classes of M -bundles over a nice space B correspond to homotopy
classes of maps cE : B → BDiff(M) from the base space B to the classifying space BDiff(M). Thus we may
view H∗(BDiff(M)) as the universal home of characteristic classes of M -bundles. These are sent to elements
in H∗(B) under the induced map c∗E : H∗(BDiff(M))→ H∗(B).

Unlike H∗(BG) with G a classical linear group, H∗(BDiff(M)) is notoriously difficult to understand. This
has caused the study of characteristic classes of smooth manifold bundles to lack much of a unifying theme,
progress being made only a space at a time in some sense (e.g. cirlce bundles, surface bundles, and some
3-manifolds).

There are however tautological classes, also know as generalized Mumford-Morita-Miller classes, defined for all
manifold bundles. These classes can be studied more holistically in the sense that statements may be obtained
that are true for large families of manifolds (or manifold bundles), usually only dependent on dimensional
constraints, for example the main results of [17], [32]. Following the resolution of Mumfords conjecture there has
been a surge of activity related to these classes (see [14], [13], [21], [17], [32], [19], [12]). Our graduate research
focused on extending the main techniques used in [14] to prove statements about more general invariants. We’ll
now provide some background material before stating some of our recent results.

Let MTSO(n) denote the Thom spectrum of the (additive) inverse of the universal n-dimensional oriented
vector bundle over BSO(n). Given an oriented closed manifold M there exist a map

α : Σ∞(BDiff+(M)+)→MTSO(n)

coming from the parametrized Pontrjagin–Thom collapse (see [20], [18], or [19]). Under the induced map

α∗ : H∗(MTSO(n))→ H∗(BDiff+(M)),
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every element ofH∗(MTSO(n)) produces an element inH∗(BDiff(M)), i.e. a characteristic class ofM -bundles.
Given a M -bundle E → B, the map α may be composed with the classifying map cE : B → BDiff(M) to
produce the so-called Madsen-Tillman-Weiss map (MTW-map for short):

αE := α ◦ cE : B →MTSO(n)

of the M -bundle E → B. The tautological characteristic classes of the bundle E → B may be described as

α∗E(c) ∈ H∗(B)

for c ∈ H∗(MTSO(n)), where α∗E : H∗(MTSO(n))→ H∗(B) is the induced map.
Understanding these classes is greatly simplified by the fact that, for many theories H∗, H∗(MTSO(n)) is well

understood and expressible in terms ofH∗(BSO(n)) via the Thom isomorphism. In particular, H∗(MTSO(n),Q) ∼=
H∗+n(BSO(n),Q). The study the MTW-map has led to many interesting results about the tautological char-
acteristic classes of M -bundles and other related invariants, for example [14], [13], [21], [17], [32], [19], [12], and
the authors thesis, to name a few.

In [13] Ebert answered perhaps the most begging question related to the tautological classes, the detection
question. That is, given a class c ∈ H∗(MTSO(n),Q), is there a M -bundle E → B for which α∗E(c) ∈ H∗(B,Q)
is nontrivial? For n = 2m even the answer is always yes, however this is not always so for n = 2m − 1 odd.
His results can be interpreted ([14] corollary 1.4) as identifying the signature of a manifold as an obstruction
to a space fibering as an M -bundle with M odd dimensional. Although this had been known for some time
(proved in [23] and [26]), this interpretation motivates the generalizations of the main results of [14] proven in
the authors thesis which identifies the higher signatures, defined below, as obstructions to fibering as an odd
dimensional manifold bundle.

For a manifold M with u : M → Bπ a map classifying its universal cover, π = π1(M), the higher signatures
of M are characteristic numbers of the form

〈L(M) ∪ u∗(x), [M ]〉

where x ∈ H∗(Bπ,Q) and L = Σ Li ∈ H4∗(BSO;Q) is the (modified) total Hirzebruch L-class associated with

the formal power series
√
x/2

tanh(
√
x/2)

(see [27] chapter 19). These characteristic numbers where conjectured by S.P.

Novikov [31] to be invariants of the oriented homotopy type of M .
Recall that a vector bundle V →M is flat if V admits a connection with vanishing curvature. Equivalently, V

is flat if V ∼= u∗Vρ, where Vρ → Bπ is the vector bundle over Bπ induced by a finite dimensional representation ρ
of π. Let ch : K → HQ denote the chern character. The higher signatures of the form 〈L(M)ch([V ]), [M ]〉 with
V flat are related to an intersection form defined on the cohomology H∗(M ;V ) of M with coefficients in V (just
as for Hirzebruch’s signature Sig(M) = 〈L(M), [M ]〉). See [28] for definitions and more on higher signatures.
For V → M flat, H∗(M ;V ) are finite dimensional vector spaces which can be identified, using general hodge
theory as in [2], [3], as the kernel of certain elliptic operators. It is this observation which is crucial for the proof
of theorem 2.1 (stated in the next section), from which the following results (theorems 1.1 and 1.2) are derived.

Theorem 1.1. Suppose f : E → B is an oriented M-bundle, with B and M both oriented smooth closed
manifolds. If the dimension of M is odd then the higher signatures of E, 〈L(E)ch([V ]), [E]〉 = 0, for all flat
Hermitian vector bundles V → E.

Theorem 1.1 generalizes corollary 1.4 of [14] (where V = 0). Note the flatness of the vector bundle in theorem
1.1 is critical (i.e. it is false without). This can be seen with the simplest example E = S1 × S1. From here
on, when we refer to higher signatures we will mean those of the form 〈L(M)ch([V ]), [M ]〉 with V → M a flat
Hermitian vector bundle.

Integration over the fiber of f : En+k → Bk, aka the gysin map f! : H∗(E) → H∗−n(B), may be used to
express characteristic numbers of E as characteristic numbes of B:

〈X, [E]〉 = 〈f!(X), [B]〉,

for any X ∈ H∗(E).
Since the L-class is multiplicative and TE = f∗TB + TvE, where TvE = ker(df) is the vertical tangent

bundle, for X = L(E)ch([V ]) this gives

〈L(E)ch([V ]), [E]〉 = 〈L(f∗TB)L(TvE)ch([V ]), [E]〉

= 〈L(B)f!(L(TvE)ch([V ])), [B]〉.
Therefore theorem 1.1 is an immediate consequence of the following:
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Theorem 1.2. Suppose f : E → B is a smooth oriented M -bundle, M a smooth closed manifold. If the
dimension of M is odd then f!(L(TvE)ch([V ])) = 0 ∈ H∗(B,Q) for all flat Hermitian vector bundles V → E.

Just as the special case ([14] theorem 1.2), the proposition is the cohomological consequence of the index of
a certain family of elliptic operators vanishing, which will be explained in the next section.

Note the classes f!(L(TvE)ch([V ])) are not tautological classes at all. Thus theorem 1.1 and 1.2 demonstrate
how the universal perspective provided by GMTW context, and techniques used thus far to explore the tautolog-
ical classes, can inform our understanding and ability to study more general characteristic classes and numbers
associated to manifold bundles. Our strong suspicion is that more work of this nature is possible.

2. Elliptic Operators

Another source of characteristic classes of manifold bundles comes from the index theory of elliptic operators.
An elliptic operator D on a smooth manifold M is a linear operator D : Γ(V0) → Γ(V1) acting between
the spaces of sections Γ(−) of vector bundles V0, V1 → M and satisfying certain local conditions. A family
D = {Db}b∈B of elliptic operators acting on the fibers of a M -bundle f : E → B is a collection of elliptic
operators, parametrized by B, where each Db is an elliptic operator on the fiber f−1(b) ∼= M above b ∈ B. See
[6] and [5] for full definitions.

The index of a family of operators D acting on the fibers of a M -bundle f : E → B is an element

ind(D) ∈ K∗(B)

in the complex K-theory of the base space. These may be passed through the Chern character to obtain rational
cohomology classes. Many well known invariants (e.g. the Euler characteristic, (higher) signature, and A-hat
genus) are expressible as indices of elliptic operators.

For example, the signature of a even dimensional manifold may be computed in terms of the index of the
even signature operator, which acts between certain spaces of differential forms (see [5]). The even signature
operator has an odd counterpart, first defined by Atiyah in [4]. The odd signature operator Do is defined for
all odd dimensional manifolds M2m−1 as follows. Do : Aev(M) → Aev(M) acts between the space Aev(M) =⊕m

k=pA
2p(M) of even degree complex valued differential forms as

Dφ = im(−1)p+1(d ?− ? d)φ

for φ ∈ A2p(M), where d is the exterior derivative and ? denotes the Hodge star operator. Given a flat Hermitian
vector bundle V → M , we can ”twist” Do by V to obtain an operator Do

V : Aev(M ;V ) → Aev(M ;V ) which
now acts on even degree forms with coefficients in the flat bundle V .

The results of the last section were obtained by considering the family of odd signature operators with
coefficients in a flat Hermitian bundle V → E acting on the fibers of an M -bundle E → B:

Theorem 2.1. Let f : E → B be an oriented M -bundle, M a closed oriented Riemannian manifold of odd
dimension, V → E a flat Hermitian vector bundle. The the family index of the odd signature operator twisted
by V is zero, index(Do

V ) = 0 ∈ K1(B)

The proof of theorem 2.1 is essentially functional analytic in nature. It relies on a supposedly well know fact
in functional analysis stated with proof as theorem 4.1 in [14] where it is applied by Ebert to show the family
index of the (untwisted) odd signature operator Do is zero. Theorem 2.1 follows from the fact that the crucial
observations made of Do by Ebert in [14] are true more generally for Do

V , thus theorem 4.1 of [14] can be applied
to Do

V to draw the same conclusion, in exactly the same manner, as was done for Do in [14].
Again, although Do

V is not symbolically universal in the sense of [14] section 3.2, the considerations made
there greatly simplify the work need to derive theorem 1.1 and 1.2 above. In particular the calculation for the
universal symbol class of the (untwisted) signature operators given as proposition 4.2 of [14] is essentially all we
need.

3. Future Plans

3.1. Manifold Bundles and Higher Signature. Currently I am preparing my thesis for publication and
would like to obtain twisted versions of some additional results from [14]. In particular, some extension of the
real refinement (theorem 5.1 of [14]) should be possible. Removing certain, likely unnecessary, smoothness and
compactness condition on the spaces involved in the above theorems is another a priority.

Continuing with the study of invariants of manifold bundles, it would be interesting to compare the vanishing
results of [14] and the above generalizations with the vanishing conditions imposed by Bott’s vanishing theorem
[9]. Bott’s vanishing theorem states that certain Pontrygin and Chern classes associated to a foliated manifold
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always vanish. Since a manifold bundle may be viewed as foliated by its fibers, many of the characteristic classes
of the total space necessarily vanish. We would like to know how strong of a statement can be obtained about
the kernel of the pushforward f! : H∗(E)→ H∗−n(B) and the L-classes of the total space of a manifold bundle
f : E → B using Bott’s vanishing theorems and other relatively elementary considerations. It seems likely that
there are many cases when the Li-class of E are already zero before being pushed forward by f!.

We would also like to get some idea of how useful theorem 1.1 above really is as an obstruction to fibering,

Question: Can we find more manifolds with non-zero higher signatures?

The simplest examples of manifolds with non-zero higher signatures are certain surfaces described in [22]
section 8. It is at least true that the higher signatures provide a more general obstruction than the usual
signature since these are surfaces and therefore have zero signature. Due to formal properties, various products
of these surfaces will have non-zero higher signatures as well. Perhaps a more pointed questions is

Question: Can we find more manifolds with non-zero higher signatures that aren’t realizable as products of
surfaces?

Some indication of how to approach this problem is given in [34] and [25]. Our hope is that combining the
considerations made in [34] and [25] with those of [22] will lead to the desired examples.

The ideas discussed in this section so far are in some sense natural extensions of the ideas contained in the
author’s thesis. My plans moving forward fall roughly into two categories.

3.2. Geometric Bordism Theory. Firstly, I’d like to continue the revival of geometric aspects of cobordism
theory eluded to in the introduction [15] and established in [14], [13], [21], [17], [32], [19], and [12], among others,
by finding applications for the general index theorem proved by Ebert in [15] and studying tautological classes
associated to more general tangential structures.

The connections between bordism and index theory demonstrated in [15] are reminiscent of the theme of [7].
In [7] Baum and Douglas provided a K-homological statement of the Atiyah-Singer index theorem (as opposed
to the traditional K-cohomological). The authors give two definitions of the cycles representing K-homology:
one geometric/topological, denoted Kt

∗, and one analytic, denoted Ka
∗ , and prove Kt

∗(X) ∼= Ka
∗ (X) for all

reasonable spaces X. Baum and Douglas’ isomorphism provides a unified framework for treating many diverse
index theorems. As Ebert’s index theorem generalizes many of the theorems the Baum-Douglas framework was
intended to treat it seems natural to ask

Question Can we put Ebert’s index theorem into the Baum-Douglas context?

Of course, using the notation of [15], this would entail describing topological and analytic cycles for KA∗(X)
and proving they determine the same theory. This is almost certainly possible, and likely not inordinately
difficult, however we feel it would go a long way towards making the theory described in [15] more digestible for
geometers and others who are not necessarily as well versed in homotopy theory.

Let θ : X → BO(n) be a fibration and let MTθ(n) denote the Thom spectrum of the of the additive
inverse of the vector bundle classified by θ. The MTW-map above is a special case of a more general map
α : Σ∞BDiffθ(M)+ →MTθ(n) defined for any θ-manifolds M (see [15] or [20] for details).

Let Γn denote Haefliger’s Category. Γn is the topological category whose objects are points in Rn with the
usual topology and morphisms between two points, say x and y, are germs of diffeomorphisms taking x to y.
The dericative induces a continuous functor Γn → Gln(R) which induces a map νn : BΓn → BGln(R). The
space BΓn classifies Γn-foliations (see [10], [8]) which are closely related to genuine foliations (in particular every
foliation determines a Γn-foliation).

Question What can the MTW-map associated to the fibration BΓn → BGln(R) ' BO(n) tell us about
characteristic classes of foliated manifold bundles?

S. Nariman has shown this question is worth considering ([29] [30]). The homology of Haefliger’s classifying
space is still only poorly understood, however Nariman has been able to deduce a number of interesting results
by considering diffeomorphism groups with the discrete topology and proving analogues of homological stability
results proven by Galatius and Randal-Williams. We’d like to pursue this direction further with an eye towards
index theoretic interpretations involving elliptic operators on foliated manifolds.
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3.3. Scalar Curvature. Secondly, I’d like explore ties between my thesis work and the recent work of Ebert
and Randal Williams in [16] and [11] which utilizes the MTW-map to study problems related to the existence
of metrics with positive scalar curvature (hereafter, psc).

Among the several curvature conditions one can put on a Riemannian metric, the condition of positive scalar
curvature provides perhaps the richest connection with topology, and in particular to cobordism theory. I’d like
to use the connections provided in [16] and [11] between the Madsen-Tillman-Weiss spectra and the space of
positive scalar curvature metrics to draw conclusions about the existence of psc metrics on the total space of a
M -bundle.

Question: If all the higher signatures of a Riemannian manifold vanish, what conditions does this impose
on curvature?

Novikov conjectured that the higher signatures are oriented homotopy invariants. This conjecture has moti-
vated decades of research and developed deep connections with many important questions in topology, however
the author is unaware of much specific geometric or topological content that can be derived from considering
the higher signatures of a particular manifold. At least, by theorem 1.1, we know that the higher signature may
be interpreted as obstructions to fibering. On the other hand, for a Riemannian spin manifold M which admits

a psc metric, it is easy to show that Â(M) = 〈Â(M), [M ]〉 = 0, where Â is the A-hat genus. In [33] J. Rosen-

berg conjectured that what he called the higher Â-genera are obstructions to the existence of metrics satisfying

certain curvature condition related to psc and provided some results in this direction. The higher Â-genera,

similar to the higher signature mentioned above, are characteristic numbers of the form 〈Â(M)ch(V ), [M ]〉,
where V →M is a flat hermitian vector bundle. We would like to know what metric conclusions can be drawn
from the vanishing of higher signatures.
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